A Shadow Calculus for 3-manifolds
نویسندگان
چکیده
We recall Turaev’s theory of shadows of 4-manifolds, and its use to present 3-manifolds. We then prove a calculus for shadows of 3-manifolds which can be viewed as the analogous of Kirby calculus in the shadow world. This calculus has the pleasant feature of being generated only by local moves on the polyhedra.
منابع مشابه
Four-manifolds with Shadow-complexity Zero
We prove that a closed 4-manifold has shadow-complexity zero if and only if it is a kind of 4-dimensional graph manifold, which decomposes into some particular blocks along embedded copies of S2 × S1, plus some complex projective spaces. We deduce a classification of all 4-manifolds with finite fundamental group and shadow-complexity zero.
متن کاملLinks, Two-handles, and Four-manifolds
We show that only finitely many links in a closed 3-manifold share the same complement, up to twists along discs and annuli. Using the same techniques, we prove that by adding 2-handles on the same link we get only finitely many smooth cobordisms between two given closed 3-manifolds. As a consequence, there are finitely many smooth closed 4-manifolds constructed from some Kirby diagram with bou...
متن کاملA Calculus for Branched Spines of 3-manifolds
We establish a calculus for branched spines of 3-manifolds by means of branched Matveev-Piergallini moves and branched bubblemoves. We briefly indicate some of its possible applications in the study and definition of State-Sum Quantum Invariants.
متن کامل2 00 5 3 - Manifolds Efficiently Bound 4 - Manifolds
It is known since 1954 that every 3-manifold bounds a 4-manifold. Thus, for instance, every 3-manifold has a surgery diagram. There are several proofs of this fact, including constructive proofs, but there has been little attention to the complexity of the 4-manifold produced. Given a 3-manifold M of complexity n, we show how to construct a 4-manifold bounded by M of complexity O(n). Here we me...
متن کاملar X iv : m at h / 05 06 57 7 v 1 [ m at h . G T ] 2 8 Ju n 20 05 3 - MANIFOLDS EFFICIENTLY BOUND 4 - MANIFOLDS
It is known since 1954 that every 3-manifold bounds a 4-manifold. Thus, for instance, every 3-manifold has a surgery diagram. There are several proofs of this fact, including constructive proofs, but there has been little attention to the complexity of the 4-manifold produced. Given a 3-manifold M of complexity n, we show how to construct a 4-manifold bounded by M of complexity O(n). Here we me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004